

Curso: RAZONAMIENTO LÓGICO

4to Secundaria - 2020

TEMA N° 09

INFERENCIAS LÓGICAS I

1. Dada la fórmula lógica, hallar su conclusión formal: $(\, {\scriptstyle \sim}\, p \vee q) \wedge (\, {\scriptstyle \sim}\, q \vee r) \wedge (\, {\scriptstyle \sim}\, r \vee s) \wedge (s \to t) \wedge {\scriptstyle \sim}\, t$

b) p

c) t

d) ~ p

e) R

2. Hallar la conclusión correcta en:

$$P_1: \sim p \rightarrow (\sim q \rightarrow \sim r)$$

 P_2 : $\sim (p \leftarrow s)$

 P_3 : $\sim s \leftarrow \sim r$

- a) ~ p
- b) q
- c) r
- d) s
- e) p⊕q
- 3. De las siguientes premisas:

 $P_1: p \oplus (t \wedge s)$

 $P_2: q \rightarrow \sim r$

 $P_3: p \rightarrow q$

P₄: r

 $P_5{:}\ u\to \, \sim s$

Se obtiene la conclusión lógica formal:

- a) ~ u c)s
- b) r
- d) q
- e) ~ s
- Si el siguiente razonamiento es válido ¿Qué debería ir en la última premisa?

 $P_1: q \rightarrow p$

 $P_2\!\!:\, q\!\leftarrow r$

 P_3 : $p \leftarrow \sim r$

P₄: ¿? // ... s

- a) $\sim p \rightarrow s$
- b) $p \lor \sim s$
- c) p⊕~s

- d) $s \leftrightarrow \sim p$
- e) q∧r
- 5. De las siguientes premisas formales:

P₁: s∧q

P₂: t⊕~a

 P_3 : $\sim s \leftrightarrow r$

Se infiere deductivamente:

- a) q
- ~ S b)
- c)

- d) r∧s
- e) ~ r ∧ t

6. Si:

 P_1 : $\sim p \rightarrow \sim q$

 P_2 : $\sim r \rightarrow s$

 $P_3:\quad q\vee \sim r$

 $P_4: p \leftrightarrow s$

¿Qué se deduce?

- a) p∨s
- b) ~ (p ↓ s)
- c) $\sim s \rightarrow p$
- d) s∨p
- p∧s
- 7. Si:

 $P_1: p \leftrightarrow q$

 P_2 : $\sim q \leftrightarrow r$

 P_3 : $r \leftrightarrow s$

 P_4 : $\sim s \oplus t$

 P_5 : t

¿Qué se infiere?

- a) $\sim p \leftrightarrow t$
- b) p⊕t
- c) $p \leftrightarrow t$
- d) ~ p
- e) q
- 8. Si:

P₁: p⊕q

 $P_2: q \rightarrow r$

 $P_3: r \rightarrow m$

P₄: S

 P_5 : $s \oplus m$

¿Qué se infiere?

- a) $p \rightarrow t$
- b) $\sim p \vee t$
- c) $\sim t \rightarrow \sim p$
- d) ~ (p∧ ~ t)
- e)

e) $\sim u \leftrightarrow s$

Si:

$$P_1: \sim p \wedge \sim q$$

$$P_2: \sim q \oplus (r \rightarrow s)$$

$$P_3: (t \rightarrow \sim r) \lor p$$

P_4 : $(t \lor s) \leftarrow u$

¿Qué se infiere?

a) $t \rightarrow \sim s$

c) p

- b) ~ u
- d) t ←~ s

10. Si:

- $P_1: \sim (p \leftrightarrow q)$
- $P_2: r \leftrightarrow (p \lor q)$
- $P_3: \sim r \vee (s \rightarrow p)$

¿Qué se infiere?

- a) $\sim s \rightarrow p$
- b) $s \rightarrow \sim q$
- c) $\sim q \rightarrow s$
- d) $\sim (s \wedge p)$
- e) s

11. De las premisas:

- $P_1: (r \lor p) \to (s \to r)$
- P₂: p⊕ r
- P_3 : $(t \rightarrow p) \land s$

Se concluye:

- a) ~ t
- b) p∧t
- c)
- ~ S d)
- e) r∨p

12. No corresponde a una forma de razonamiento conocido como el teorema de Morgan (D.M):

- $\sim (p \cdot q) \equiv \sim p \vee \sim q$ a)
- $\sim (p \lor q) \equiv (\sim p \cdot \sim q)$
- $\sim (p \land q) \equiv (\sim p \lor \sim q)$
- $\sim (p \lor q) \equiv \sim p \land q$ d)
- $(\sim p \vee \sim q) \equiv \sim (p \wedge q)$

13. Dadas las siguientes premisas formales:

- $P_1: G \vee (H \supset I)$
- $P_2: \neg G \wedge \neg I$
- ~ H
- Η b)
- 1 c)
- $H \vee I$ d)
- G e)

14. De las siguientes premisas:

- 1. p∧r
- 2. $\sim m \rightarrow k$
- 3. $(p \rightarrow q) \leftarrow k$
- 4. $(m \rightarrow s) \leftarrow r$
- 5. ~ q
- 6. $n \leftrightarrow s$

Se infiere:

- a)
- b) ~ s ∧ m
- c) s
- d) $q \rightarrow \sim s$
- e) $n \rightarrow q$

15. De las siguientes premisas:

- 1. t ← s
- 2. $(p \rightarrow q) \rightarrow r$
- $\sim r \vee \sim t$
- 4. s
- $u \leftarrow (p \land \sim q)$
- 6. $(w \rightarrow u) \oplus \sim z$

Se infiere:

- a) ~ q
 - b) z c) p
- d) $u \rightarrow t$ e) $z \rightarrow r$

16. De las siguientes premisas:

- 1. u
- $2. \quad p \to {\scriptscriptstyle \sim} \, q$
- 3. $p \wedge \sim k$
- 4. $s \rightarrow (\sim r \rightarrow t)$
- 5. $\sim (u \rightarrow q) \rightarrow (r \rightarrow k)$

Se infiere:

- a) ~ t
- b) r
- ~ u c)
- $s \rightarrow t$
- e) $r \rightarrow w$

17. De las siguientes premisas:

- 1. $q \rightarrow r$
- 2. $\sim (p \land \sim q)$
- u⊕s 3.
- 4. $r \rightarrow t$
- 5. $p \land (t \rightarrow s)$

Se infiere:

a)
$$s \lor t$$
 b) $\sim q$ c) $r \rightarrow p$ d) $\sim u$ e) $\sim p \lor u$

18. De las siguientes premisas:

- 1. $\sim p \vee \sim q$
- 2. q∨r
- 3. $r \rightarrow t$
- ~m∧p
- 5. $s \rightarrow m$

Se infiere:

- a) p∧~ m
- \sim (m \vee \sim t) b)
- c) ~ S
- e) $t \wedge \sim s$

19. De las siguientes premisas:

- 1. $t \rightarrow (\sim r \land s)$
- $(q \wedge r) \rightarrow (\sim m \vee n)$
- 4. $(q \wedge r) \oplus \sim p$
- $\lceil p \downarrow (\sim q \land p) \rceil \rightarrow r$

Se infiere:

- a) ~ n
- b) р
- c) ~p↓s
- d) n∧s
- p↓r

- 20. De las siguientes premisas:
 - 1. q ↔ r
 - 2. $p \rightarrow q$
 - 3. $\sim s \vee \sim r$
 - 4. $\sim p \rightarrow (s \rightarrow \sim m)$
 - 5. s∧m
 - Se concluye:
 - a) ~p∨s
 - b) $p \downarrow \sim s$
 - c) ~ p
 - d) $q \rightarrow m$
 - e) ~ s
- 21. De las siguientes premisas:
 - 1. $s \lor (k \rightarrow q)$
 - 2. $\sim p \wedge t$
 - 3. $\sim t \vee (\sim s \wedge k)$
 - 4. $\sim (q \vee \sim u) \leftarrow (z \vee w)$
 - 5. $n \rightarrow (z \lor w)$
 - 6. $(p \downarrow n) \rightarrow v$
 - Se infiere:
 - a) $v \rightarrow w$
 - b) ~ k
 - c) n
 - d)
- e) ~ n
- 22. Dadas las premisas formales:
 - 1. $t \leftrightarrow u$
 - 2. p∨t
 - 3. $\sim p \oplus q$
 - 4. $\sim (r \equiv s)$
 - 5. $\mathbf{q} \oplus \sim \mathbf{r}$
 - 6. $\mathbf{u} \leftrightarrow (\mathbf{w} \land \sim \mathbf{w})$
 - Se concluve:
 - a) $\sim (\sim u \land \sim s)$
 - b) ~ p∨u
 - c) $(\sim s | \sim u)$
 - d) $s \rightarrow z$
 - e) Todas las anteriores.
- 23. De las siguientes premisas:

 - 1. $\sim t$ 2. $\mathbf{n} \wedge (\sim \mathbf{p} \vee \mathbf{t})$
 - 3. $(p \wedge m) \vee (q \wedge m)$
 - 4. $q \rightarrow w$
 - Se infiere:
 - a) w
 - b) q
 - c) $\sim q$
 - d) p
 - e) m↓q
- 24. De las siguientes premisas:
 - 1. $q \rightarrow r$
 - 2. $\sim (\sim p \downarrow q)$
 - 3. p⊕s
 - 4. $\sim r \oplus t$
 - Se infiere:
 - a) s∨t b) ~ p
 - c) $r \rightarrow p$

- d) $\sim s$
- e) $\sim p \vee r$
- 25. De las siguientes premisas:
 - 1. $\sim p \downarrow \sim r$
 - 2. m∨k
 - 3. $(p \rightarrow q) \leftarrow k$
 - 4. $(\sim m \vee s) \vee \sim r$
 - 5. ∼ q
 - Se infiere:
 - a) q
 - b) $\sim s \wedge q$
 - c) s
 - d) $q \rightarrow \sim s$
 - e) $s \rightarrow q$
- 26. De las siguientes premisas:
 - 1. $t \leftarrow s$
 - 2. $(\sim p \lor q) \rightarrow r$
 - 3. r|t
 - 4.
 - 5. $u \leftarrow (p \land \sim q)$
 - Se infiere:
 - a) $p \land \sim q$
 - b) $p \downarrow \sim q$
 - c) ~ q
 - d) $u \rightarrow p$
- 27. De las siguientes premisas:
 - 1. q ↔ r
 - 2. $\sim t \vee \sim s$
 - 3. s ← r
 - 4. $p \rightarrow q$
 - 5. t
 - 6. $\sim \mathbf{p} \rightarrow \mathbf{u}$
 - Se infiere deductivamente:
 - a) p
 - b) $q \wedge \sim s$
 - c) u
 - d) $\sim p$
 - e) \sim s
- 28. De las siguientes premisas:
 - 1. $(k \lor m) \land p$
 - 2. ~ **q**
 - 3. $k \rightarrow (q \leftarrow p)$
 - 4. $\sim m \lor (\sim r \lor s)$
 - 5. $(\sim s \rightarrow \sim r) \leftrightarrow n$
 - Se infiere:
 - a) r∧s
 - b) s
 - c) q ∨~ n
 - d) $s \wedge \sim r$
 - e) $\sim n \rightarrow w$
- 29. Dadas las siguientes premisas:
 - 1. $\mathbf{q} \rightarrow \sim \mathbf{p}$
 - 2. $(\sim p \mid \sim t)$
 - 3. $\mathbf{r} \downarrow \sim \mathbf{s}$
 - 4. $\sim r \rightarrow q$
 - Se concluye en:
 - a) $q \rightarrow p$
 - b) ~ t
 - c) p
 - d) r
 - e) t∧s